Junxi2021-05-18
高频数据处理技巧:如何将高频信号转化成离散的买卖信号

高频交易中,我们通常首先基于tick级的报价信息和交易信息来生成信号量,然后将这些信号量转化成离散的买卖信号,譬如说 1 (买入), 0 (不变), -1(卖出),接着根据资金和已有头寸以及其他优化规则来生成订单发送到交易系统。本文要讨论第二个步骤,即如何将信号量转化成离散的买卖信号,也就是把一个浮点数类型的数组signal转化成一个取值为1,0或-1的整型数组direction。

金融
高频数据处理技巧:如何将高频信号转化成离散的买卖信号
Junxi2021-05-18
DolphinDB历史数据回放教程

一个量化策略在用于实际交易时,处理实时数据的程序通常为事件驱动。而研发量化策略时,需要使用历史数据进行回测,这时的程序通常不是事件驱动。因此同一个策略需要编写两套代码,不仅耗时而且容易出错。在 DolphinDB database 中,用户可将历史数据按照时间顺序以“实时数据”的方式导入流数据表中,这样就可以使用同一套代码进行回测和实盘交易。

流计算
DolphinDB历史数据回放教程
Junxi2021-05-18
量化交易回测系列三:多因子Alpha策略最佳因子权重

在本系列二(多因子Alpha策略回测)中,我们对美股市场的4个量化因子进行了回测。在这里,我们将使用 DolphinDB database 内置的quadprog函数,对各个因子的权重进行均值方差优化,以决定最佳因子权重。

金融
量化交易回测系列三:多因子Alpha策略最佳因子权重
Junxi2021-05-18
寻找相似的历史k线

有网友提问应该用什么样的数据库/数据结构/算法来计算某支股票的相似K线? 具体的问题描述是,假设给出某股某段行情K线(单位/日),从任何其他股票历史中匹配出与之最为相似的某段历史K线,并给出相似度值(单位/%),并以此排序,获取最为相似的N个结果。

金融
寻找相似的历史k线
Junxi2021-05-18
使用DolphinDB快速计算买方或卖方驱动交易

给定高频交易数据以及报价数据,如何判断每笔交易是由买方驱动或是卖方驱动,是进行高频交易数据分析经常需要处理的问题。本文将介绍如何使用DolphinDB快速计算每笔交易的驱动方,只需不到2秒钟即可对美国一天的level 1的高频交易数据进行计算并存入数据库。本文使用了非同时连接(asof join)以及map-reduce。 本文用到的数据是含有逐笔交易的交易表trade和买卖报价表nbbo。

金融
使用DolphinDB快速计算买方或卖方驱动交易
Junxi2021-05-14
如何使用DolphinDB处理Tushare金融数据

DolphinDB是新一代的时序数据库,不仅可以作为分布式数据仓库或者内存数据库来使用,而且自带丰富的计算工具,可以作为研究工具或研究平台来使用,非常适用于量化金融、物联网等领域的海量数据分析。量化金融领域的不少问题,如交易信号研究、策略回测、交易成本分析、股票相关性研究、市场风险控制等,都可以用DolphinDB来解决。 本教程将介绍如何把Tushare的沪深股票2008年到2017年的日线行情数据和每日指标数据导入到 DolphinDB database,并使用DolphinDB进行金融分析。Tushare是金融大数据开放社区,拥有丰富的金融数据,如股票、基金、期货、数字货币等行情数据,为量化从业人员和金融相关研究人员免费提供金融数据。

金融
如何使用DolphinDB处理Tushare金融数据
Junxi2021-05-14
量化交易回测系列二:多因子Alpha策略回测

本系列文章将会介绍如何使用DolphinDB优雅而高效的实现量化交易策略回测。本文将介绍在华尔街广泛应用的多因子Alpha策略的回测。多因子模型是量化交易选股中最重要的一类模型,基本思路是找到某些和回报率最相关的指标,并根据这些指标,构建股票投资组合(做多正相关的股票,做空负相关的股票)。多因子模型中,单独一个因子的个股权重一般实现多空均衡(市场中性),没有暴露市场风险的头寸(beta为0,所以称之为alpha策略),能实现绝对收益。多个因子之间相互正交,方便策略配置,实现回报和风险的最优控制。另外,相比于套利策略(通常可以实现更高的sharpe ratio,但是scale不好),多因子alpha策略有很好的scale,可以配置大量的资金。多因子Alpha策略在对冲基金中的使用非常普遍。

金融
量化交易回测系列二:多因子Alpha策略回测
Junxi2021-05-14
DolphinDB作为量化金融研究平台的8大优势

DolphinDB不仅可以当作分布式数据仓库或者内存数据库来使用,而且自带丰富的计算工具,可以作为一个研究工具或研究平台来使用。DolphinDB对时间序列数据的处理特别友好,非常适合量化金融、物联网等领域的海量数据分析。例如在量化金融领域的不少问题,交易信号研究,策略回测,交易成本分析,股票相关性研究,市场风险控制,都可以用DolphinDB平台快速的解决。下面列举的8大功能特点完美阐释了DolphinDB作为一个研究平台的优势。

选型
DolphinDB作为量化金融研究平台的8大优势
Junxi2021-05-14
DolphinDB实现动量交易策略详解

动量策略是最流行的量化策略之一。商品期货的CTA策略,绝大多数都是基于动量策略。在股票市场,动量策略也是常用的量化因子之一。通俗地讲,动量策略就是“追涨杀跌”。下面我们将介绍如何在DolphinDB中测试动量交易策略,并计算动量交易策略的累积回报。

金融
DolphinDB实现动量交易策略详解